Design a flowchart (or use C) and an assembly program to convert the value of a decimal number represented by a null-terminated ASCII string at label TEXT into an unsigned 32-bit binary number. This ASCII string contains only the ASCII characters " 0 " through " 9 ". The string may contain leading zeros, and it will only contain valid values between 0 and $4294967295\left(2^{32}-1\right)$. Store the result in memory at label NUMBER. For the example given below, your program must place 0x00007fff at label NUMBER. Similarly, the text " 0123 " must result in the value $0 \times 0000007 \mathrm{~b}$ stored at NUMBER. Hint: convert character " 0 " to number 0 by subtracting " 0 ", ie " 0 " - " 0 " $=0$.

```
.include "ubc-de1media-macros.s"
.global _start
.data
TEXT:
.asciz "32767"
ZERO:
.ascii "0"
NUMBER:
.word 0
.text
    start:
```

NAME:

Consider two separate null-terminated strings starting at labels NEEDLE and HAYSTACK. Design a flowchart (or use C) and an assembly program to find the starting memory location of the first occurrence of the NEEDLE in the HAYSTACK. Store this location in memory at label MATCH_ADDR. If NEEDLE is not present, store the value 0xFFFFFFFF instead. Do not exceed the length of the strings. For example, if HAYSTACK starts at 0×00001000 and contains "The Search is Over" and NEEDLE contains "ear", the program would write 0×00001005 to MATCH_ADDR.

```
.include "ubc-de1media-macros.s"
.global _start
.data
HAYSTACK:
.asciz "The Search is Over"
NEEDLE:
.asciz "ear"
MATCH_ADDR:
.word 0xFFFFFFFF
.text
    start:
```

Hints
(1)- examine TEXT, character at a time
a convent character to digit, eg $\begin{gathered} \\ 3 \\ \\ \uparrow\end{gathered} \quad 10$ ' $=3$

$$
\text { Ascii: } 5148
$$

- go to next digit

$$
\begin{aligned}
& \Rightarrow 3 \times 10=30 \\
& +2^{\prime}-10=\frac{+2}{32} \\
& \Rightarrow 32 \times 10=320 \\
& +7^{\prime}-0^{\prime}=\frac{7}{327}
\end{aligned}
$$

etc.
(2) H0. "The search is oven" ϕ
N : "ear" ϕ
Cook at H from first to last character
for each position, check if it matches all chows in N endlorp subroutine
corner cases: "ear" (1) reach char in H and \varnothing in $N \Rightarrow$ match
"ver" (2) reach \varnothing in H and ϕ in $N \Rightarrow$ match
"era" (3) reach ϕ in H and cham in $N \Rightarrow$ no match other cases: make sure you find "ear" in "eear".

. text

- global-stant
$-s t a r t=\begin{array}{ll}\text { movia r16, TEXT } \\ \text { movi r2, }\end{array}$
loop: $\quad 1 d b \quad r 3, O(r 16)$
beq $r 3, r \phi$, done
subi $r^{3}, r^{3},{ }^{\prime} \phi$ '
muli $\quad{ }^{2} 2, r 2,10$
add $r 2, r 2, r 3$
addi $r 16, r 16,1$ br loop
done: movia r16, NUMBER stw $r 2,0(r 16)$
stop: br stop
- data

TEXT:

- asciz " $32767^{\prime \prime}$

NUMBER:

- word ϕ
rend

. text
- global - start
_start: movia rl6, H movi r17,-1
nextmatch: $1 d b \quad r^{2}, o(r 16)$
beq $r 2, r \phi$, done
mov r4, r16 call is Match
bne \quad 2,r申, match
adde -16, r16,1
br nextmatch
match: mov r17,r16
done: movia r18, MATH_ADOR stw r17, o(r18)
stop: br stop
isMatch: mov r8, r4 movia $r 9, N$
nextchar: $1 d b$ r2,o(r9) beq $r 2, r \phi$, return 1
$1 d b \quad r 3, o(r 8)$
beq $r 3, r \phi$, return ϕ
bne $r^{2},-3$, return ϕ
adde $r 8, r 8,1$
addi \quad ra, ra, 1
br nextchar
return 1: movi $r 2,1$ ret
return ϕ : movi $r 2,0$ ret

